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Understanding how institutional changes within academia may
affect the overall potential of science requires a better quantitative
representation of how careers evolve over time. Because knowl-
edge spillovers, cumulative advantage, competition, and collabora-
tion are distinctive features of the academic profession, both the
employment relationship and the procedures for assigning recog-
nition and allocating funding should be designed to account for
these factors. We study the annual production niðtÞ of a given
scientist i by analyzing longitudinal career data for 200 leading
scientists and 100 assistant professors from the physics community.
Our empirical analysis of individual productivity dynamics shows
that (i) there are increasing returns for the top individuals within
the competitive cohort, and that (ii) the distribution of production
growth is a leptokurtic “tent-shaped” distribution that is remark-
ably symmetric. Our methodology is general, and we speculate
that similar features appear in other disciplines where academic
publication is essential and collaboration is a key feature. We intro-
duce a model of proportional growth which reproduces these two
observations, and additionally accounts for the significantly right-
skewed distributions of career longevity and achievement in
science. Using this theoretical model, we show that short-term
contracts can amplify the effects of competition and uncertainty
making careers more vulnerable to early termination, not necessa-
rily due to lack of individual talent and persistence, but because
of random negative production shocks. We show that fluctuations
in scientific production are quantitatively related to a scientist’s
collaboration radius and team efficiency.

career trajectory ∣ labor market ∣ science of science ∣ tenure ∣
computational sociology

Institutional change could alter the relationship between science
and scientists as well as the longstanding patronage system in

academia (1, 2). Some recent shifts in academia include the chan-
ging business structure of research universities (3), shifts in the
labor supply demand balance (4), a bottleneck in the number of
tenure track positions (5), and a related policy shift away from
long-term contracts (3, 6). Along these lines, significant factors
for consideration are the increasing range in research team size
(7), the economic organization required to fund and review col-
laborative research projects, and the evolving definition of the
role of the academic research professor (3).

The role of individual performance metrics in career appraisal,
in domains as diverse as sports (8, 9), finance (10, 11), and aca-
demia, is increasing in this data rich age. In the case of academia,
as the typical size of scientific collaborations increases (7), the
allocation of funding and the association of recognition at the
varying scales of science [individual ⇆ group ⇆ institution
(12)] has become more complex. Indeed, scientific achievement
is becoming increasingly linked to online visibility in a consider-
able reputation tournament (13).

Here we seek to identify (i) quantitative patterns in the scien-
tific career trajectory towards a better understanding of career
dynamics and achievement (14–20), and (ii) how scientific pro-
duction responds to policies concerning contract length. Using
rich productivity data available at the level of single individuals,
we analyze longitudinal career data keeping in mind the roles

of spillovers, group size, and career sustainability. Although our
empirical analysis is limited to careers in physics, our approach is
general. We speculate that similar features describe other disci-
plines where academic publication is a primary indicator and
collaboration is a key feature.

Specifically, we analyze production data for 300 physicists i ¼
1…300 who are distributed into 3 groups: (i) Group A corre-
sponds to the 100 most cited physicists with average h-index
hhi ¼ 61� 21, (ii) Group B corresponds to 100 additional highly
cited physicists with hhi ¼ 44� 15, and (iii) Group C corre-
sponds to 100 assistant professors in 50 US physics departments
with hhi ¼ 15� 7. We define the annual production niðtÞ as the
number of papers published by scientist i in year t of his/her ca-
reer. We focus on academic careers from the physics community
to approximately control for significant cross-disciplinary produc-
tion variations. Using the same set of scientists, a companion
study has analyzed the rank-ordered citation distribution of each
scientist with a focus on the statistical regularities underlying
publication impact (17). We provide further description of the
data and present a parallel analysis of 21,156 sports careers in
SI Appendix.

We begin this paper with empirical analysis of longitudinal
career data. Our empirical evidences serve as statistical bench-
marks used in the final section where we develop a stochastic pro-
portional growth model. In particular, our model shows that a
short-term appraisal system can result in a significant number
of “sudden” early deaths due to unavoidable negative production
shocks. This result is consistent with a Matthew Effect model
(16) and recent academic career survival analysis (21), which de-
monstrate how young careers can be stymied by the difficulty in
overcoming early achievement barriers. Altogether, our results
indicate that short-term contracts may increase the strength of
the “rich-get-richer” mechanism in science (22, 23) and may
hinder the upward mobility of young scientists.

Results
Scientific Production and the Career Trajectory.The academic career
depends on many factors, such as cumulative advantage (16, 19,
22, 23), the “sacred spark,” (24, 25), and other complex aspects
of knowledge transfer manifest in our techno-social world (26).
To exemplify this complexity, a recent case study on the impact
trajectories of Nobel prize winners shows that “scientific career
shocks” marked by the publication of an individual’s “magnum
opus” work(s) can trigger future recognition and reward, resem-
bling the cascading dynamics of earthquakes (27).

We model the career trajectory as a sequence of scientific out-
puts which arrive at the variable rate niðtÞ. Because the reputation
of a scientist is typically a cumulative representation of his/her
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contributions, we consider the cumulative production NiðtÞ ≡
∑t

t 0¼1
niðt 0Þ as a proxy for career achievement. Fig. 1A shows

the cumulative production NiðtÞ of six notable careers which dis-
play a temporal scaling relationNiðtÞ ≈Aitαi where αi is a scaling
exponent that quantifies the career trajectory dynamics. The
average and standard deviation of the αi values calculated for
each dataset are hαii ¼ 1.42� 0.29 [A], 1.44� 0.26 [B], and
1.30� 0.31 [C]. We justify this two-parameter model in the SI
Appendix text using scaling methods and data collapse.

There are also numerous cases of NiðtÞ which do not exhibit
such regularity (see SI Appendix: Fig. S1), but instead display
marked nonstationarity and nonlinearity arising from significant
exogenous career shocks. Positive shocks, possibly corresponding
to just a single discovery, can spur significant productivity and
reputation growth (24, 27). Negative shocks, such as in the case
of scientific fraud, can end the career rather suddenly. We also
acknowledge that the end of the career is a difficult phase to ana-
lyze, because such an event can occur quite abruptly, and so our
analysis is mainly concerned with the growth phase and not the
termination phase.

In order to analyze the average properties of NiðtÞ for all 300
scientists in our sample, we define the normalized trajectory
N 0

i ðtÞ ≡ NiðtÞ∕hnii. The quantity hnii is the average annual pro-
duction of author i, with N 0

i ðLiÞ ¼ Li by construction (Li corre-
sponds to the career length of individual i). Fig. 1B shows the
characteristic production trajectory obtained by averaging to-
gether the 100 N 0

i ðtÞ belonging to each dataset,

hN 0ðtÞi ≡
�
NiðtÞ
hnii

�
≡

1

100∑
100

i¼1

NiðtÞ
hnii

: [1]

The standard deviation σðN 0ðtÞÞ shown in SI Appendix: Fig. S2B
begins to decrease after roughly 20 y for dataset [A] and [B] scien-
tists. Over this horizon, the stochastic arrival of career shocks can
significantly alter the career trajectory (20, 24, 27, 28).

Each N 0
i ðtÞ exhibits robust scaling corresponding to the scaling

law hN 0ðtÞi ∼ t ᾱ. This regularity reflects the abundance of careers
with αi > 1 corresponding to accelerated career growth. This
acceleration is consistent with increasing returns arising from
knowledge and production spillovers.

Fluctuations in Scientific Output over the Academic Career. Indivi-
duals are constantly entering and exiting the professional market,
with birth and death rates depending on complex economic and
institutional factors. Due to competition, decisions and perfor-
mance at the early stages of the career can have long lasting con-
sequences (16, 29). To better understand career uncertainty
portrayed by the common saying “publish or perish” (30), we ana-
lyze the outcome fluctuation

riðtÞ ≡ niðtÞ − niðt − ΔtÞ [2]

of career i in year t over the time interval Δt ¼ 1 y. Fig. 2 A and B
show the unconditional probability density function (pdf) of r va-
lues which are leptokurtic but remarkably symmetric, illustrating
the endogenous frequencies of positive and negative output
growth. Output fluctuations arise naturally from the lulls and
bursts in both the mental and physical capabilities of humans
(31, 32). Moreover, the statistical regularities in the annual pro-
duction change distribution indicate a striking resemblance to the
growth rate distribution of countries, firms, and universities
(33, 34).

To better account for individual growth factors, we next define
the normalized production change

r 0
i ðtÞ ≡ ½riðtÞ − hrii�∕σiðrÞ [3]

which is measured in units of the fluctuation scale σiðrÞ unique to
each career. We measure the average hrii and the standard devia-
tion σiðrÞ of each career using the first Li available years for each
scientist i. r 0

i ðtÞ is a better measure for comparing career uncer-
tainty, because individuals have production factors that depend
on the type of research, the size of the collaboration team,
and the position within the team. Fig. 2C shows that Pðr 0Þ,
the pdf of r 0 measured in units of standard deviation, is well ap-
proximated by a Gaussian distribution with unit variance. The
data collapse of each Pðr 0Þ onto the predicted Gaussian distribu-
tion (solid green curve) indicates that individual output fluctua-
tions are consistent with a proportional growth model. We note
that the remaining deviations in the tails for jr 0j ≥ 3 are likely
signatures of the exogenous career shocks that are not accounted
for by an endogenous proportional growth model.

The ability to collaborate on large projects, both in close
working teams and in extreme examples as remote agents [i.e.
Wikipedia (35)], is one of the foremost properties of human
society. In science, the ability to attract future opportunities
is strongly related to production and knowledge spillovers
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Fig. 1. Persistent accelerating career growth. (A) The career trajectory
NiðtÞ ∼ tαi of six stellar careers from varying age cohorts. The αi value char-
acterizes the career persistence, where careers with α > 1 are accelerating. αi

values calculated using OLS regression in alphabetical order are: α ¼ 1.25�
0.02, α ¼ 1.72� 0.02, α ¼ 1.62� 0.04, α ¼ 1.23� 0.02, α ¼ 1.34� 0.05, α ¼
1.35� 0.04. (B) Defined in Eq. 1, the average career trajectory hN 0ðtÞi calcu-
lated from 100 individual NiðtÞ in each dataset demonstrates robust acceler-
ating career growth within each cohort. We use the normalized career
trajectory N 0

i ðtÞ in order to aggregate NiðtÞ with varying publication rates
hnii. As a result, the aggregate scaling exponent ᾱ quantifies the acceleration
of the typical career over time, independent of hnii. For the scientific careers,
we calculate ᾱ values: 1.28� 0.01 [A], 1.31� 0.01 [B], and 1.15� 0.02 [C].
These values are all significantly greater than unity, ᾱ > 1, indicating that cu-
mulative advantage in science is closely related to knowledge and production
spillovers. We calculate ᾱ using OLS regression and plot the corresponding
best-fit lines (dashed) for each dataset.
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(28, 36, 37) that are facilitated by the collaboration network
(7, 12, 38–42). Indeed, there is a tipping point in a scientific ca-
reer that occurs when a scientist’s knowledge investment reaches
a critical mass that can sustain production over a long horizon,
and when a scientist becomes an attractor (as opposed to a pur-
suer) of new collaboration/production opportunities. To account
for collaboration, we calculate for each author the number kiðtÞ
of distinct coauthors per year and then define his/her collabora-
tion radius Si as the median of the set of his/her kiðtÞ values,
Si ≡ Med½kiðtÞ�. We use the median instead of the average
hkiðtÞi because extremely large kiðtÞ values can occur in specific
fields such as high-energy physics and astronomy.

Given the complex scientific coauthorship network, we ask
the question: what is the typical number of unique coauthors
per year? Fig. 2D shows the cumulative distribution function
CDFðSiÞ of Si values for each dataset. The approximately linear
form on log-linear axes indicates that Si is exponentially distrib-
uted, PðSiÞ ∼ exp½−λSi�. We calculate λ ¼ 0.15� 0.01 [A], λ ¼
0.11� 0.01 [B], and λ ¼ 0.11� 0.01 [C]. The exponential size
distribution has been shown to emerge in complex systems where
linear preferential attachment governs the acquisition of new op-
portunities (43). This result shows that the leptokurtic “tent-
shaped” distribution PðrÞ in Fig. 2 follows from the exponential
mixing of heterogenous conditional Gaussian distributions (44).

The exponential mixture of Gaussians decomposes the uncon-
ditional distribution PðrÞ into a mixture of conditional Gaussian
distributions

PðrjSiÞ ¼ exp½−r2∕2VSψ
i �∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πVSψ

i

q
; [4]

each with a fluctuation scale σiðrÞ depending on Si by the scaling
relation

σ2
i ðrÞ ≈ VSψ

i : [5]

Hence, the mixture is parameterized by ψ

PψðrÞ ¼
Z

∞

0

PðrjSÞPðSÞdS ≈∑
i¼1

PiðrjSiÞPðSiÞ: [6]

The independent case ψ ¼ 0 results in a Gaussian PψðrÞ and
the linear case ψ ¼ 1 results in a Laplace (double-exponential)
PψðrÞ. See SI Appendix and ref. 44 for further discussion of
the ψ dependence of PψðrÞ.

The Size-Variance Relation and Group Efficiency. The values of
ψ for scientific and athletic careers follow from the different
combination of physical and intellectual inputs that enter the pro-
duction function for the two distinct professions. Academic knowl-
edge is typically a nonrival good, and so knowledge-intensive
professions are characterized by spillovers, both over time and
across collaborations (36, 37), consistent with αi > 1 and ψ > 0.
Interestingly, Azoulay, et al. show evidence for production spil-
lovers in the 5–8% decrease in output by scientists who were close
collaborators with a “superstar” scientists who died suddenly (28).

We now formalize the quantitative link between scientific col-
laboration (38, 39) and career growth given by the size-variance
scaling relation in Eq. 5 visualized in the scatter plot in Fig. 3B.
Using ordinary least squares (OLS) regression of the data on log-
log scale, we calculate ψ∕2 ≈ 0.40� 0.03 (R ¼ 0.77) for dataset
[A], ψ∕2 ≈ 0.22� 0.04 (R ¼ 0.51) [B], and ψ∕2 ≈ 0.26� 0.05
(R ¼ 0.45) [C]. Interdependent tasks that are characteristic of
group collaborations typically involve partially overlapping ef-
forts. Hence, the empirical ψ values are significantly less than
the value ψ ¼ 1 that one would expect from the sum of Si inde-
pendent random variables with approximately equal variance V .
Collectively, these empirical evidences serve as coherent motiva-
tions for the preferential capture growth model that we propose
in the following section.

Alternatively, it is also possible to estimate ψ using the relation
between the average annual production hnii and the collabora-
tion radius Si. The input-output relation hnii ∼ Sψ

i quantifies
the collaboration efficiency, with ψ ¼ 0.74� 0.04 (R ¼ 0.87)
for dataset [A] and ψ ¼ 0.25� 0.04 (R ¼ 0.37) for dataset
[B]. If the autocorrelation between sequential production values
niðtÞ and niðtþ 1Þ is relatively small, then we expect the scaling
exponents calculated for hnii and σ2

i ðrÞ to be approximately
equal. This result follows from considering riðtÞ as the convolu-
tion of an underlying production distribution PiðnÞ for each scien-
tist that is approximately stable. Interestingly, the larger ψ values
calculated for dataset [A] scientists suggests that prestige is
related to the increasing returns in the scientific production
function (45).

Next we use an alternative method to estimate the annual col-
laboration efficiency by relating the number of publications niðtÞ
in a given year to the number of distinct coauthors kiðtÞ over the
same year. We use a single-factor production function,

niðtÞ ≈ qi½kiðtÞ�γi ; [7]

to quantify the relation between output and labor inputs with a
scaling exponent γi. We estimate qi and γi for each author using
OLS regression, and define the normalized output measure
Qi ∝ niðtÞ∕kiðtÞγi using the best-fit qi and γi values calculated
for each scientist i. Fig. 3C shows the efficiency parameter γ

-30 -20 -10 0 10 20 30

r (publications)

10-4

10-3

10-2

10-1

100

101

P(
r)

Dataset A
Dataset B
Dataset C

-30 -20 -10 0 10 20 30

r (publications)

1-10
11-20
21-30
31-40
41-

A B

-5 -4 -3 -2 -1 0 1 2 3 4 5

r  (units of s.d.)

10-3

10-2

10-1

100

P(
r

)

Dataset A
Dataset B
Dataset C

C

0 10 20 30 40
S

i
 = Med [k

i
(t)]

10-2

10-1

100

C
D

F(
 X

 >
 S

i
)

Dataset A
Dataset B
Dataset C

D

Fig. 2. Empirical evidence for the proportional growth model of career pro-
duction. (A) pdf of the annual production change r in the number of papers
published over a Δt ¼ 1 y period. In the bulk of each PðrÞ, the growth distri-
bution is approximately double-exponential (Laplace). (B) To test the stability
of the distribution over career trajectory subintervals, we separate riðtÞ
values into 5 nonoverlapping 10-year periods and verify the stability of
the Laplace PðrÞ. For each PðrÞ, we also plot the corresponding Laplace dis-
tribution (solid line) with standard deviation σ and mean μ ≈ 0 calculated
using the maximum likelihood estimator method. To improve graphical
clarity, we vertically offset each PðrÞ by a constant factor. For visual compar-
ison, we also plot a Normal distribution (dashed black curve) with σ ≡ 1which
instead decays parabolically on the log-linear axes. (C) Accounting for indi-
vidual production factors by using the normalized production change r 0, the
resulting pdfs Pðr 0Þ collapse onto a Gaussian distribution with unit variance.
Deviations in the tails likely correspond to extreme “career shocks.” (D) The
cumulative distribution CDFðX ≥ SiÞ is exponential, indicating that the
unconditional distributions PðrÞ in (A) and (B) follow from an exponential
mixing of conditional Gaussian distributions PðrjSiÞ.
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calculated by aggregating all careers in each dataset, and indi-
cates that this aggregate γ is approximately equal to the average
hγii calculated from the γi values in each career dataset:
γ ¼ 0.68� 0.01 [A], γ ¼ 0.52� 0.01 [B], and γ ¼ 0.51� 0.02
[C]. Furthermore, the ψ and γ values are approximately equal,
which is not surprising, because both scaling exponents are effi-
ciency measures that relate the scaling relation of output niðtÞ per
input kiðtÞ.

A Proportional Growth Model for Scientific Output. We develop a
stochastic model as a heuristic tool to better understand the
effects of long-term vs. short-term contracts. In this competition

model, opportunities (i.e., new scientific publications) are cap-
tured according to a general mechanism whereby the capture rate
PiðtÞ depends on the appraisal wiðtÞ of an individual’s record of
achievement over a prescribed history. We define the appraisal to
be an exponentially weighted average over a given individual’s
history of production

wiðtÞ ≡ ∑
t−1

Δt¼1

niðt − ΔtÞe−cΔt; [8]

which is characterized by the appraisal horizon 1∕c. We use the
value c ¼ 0 to represent a long-term appraisal (tenure) system
and a value c ≫ 1 to represent a short-term appraisal system. Each
agent i ¼ 1…I simultaneously attracts new opportunities at a rate

PiðtÞ ¼
wiðtÞπ

∑
I

i¼1
wiðtÞπ

[9]

until all P opportunities for a given period t are captured. We as-
sume that each agent has the production potential of one unit per
period, and so the total number of opportunities distributed per
period P is equal to the number of competing agents, P ≡ I.

We use Monte Carlo (MC) simulation to analyze this two-
parameter model over the course of t ¼ 1…T sequential periods.
In each production period (i.e., representing a characteristic time
to publication), a fixed number of P production units are cap-
tured by the competing agents. At the end of each period, we
update each wiðtÞ and then proceed to simulate the next prefer-
ential capture period tþ 1. BecausePiðtÞ depends on the relative
achievements of every agent, the relative competitive advantage
of one individual over another is determined by the parameter π.
In the SI Appendix we elaborate in more detail the results of our
simulation of synthetic careers dynamics. We vary π and c for a
labor force of size I ≡ 1; 000 and maximum lifetime T ≡ 100 per-
iods as a representative size and duration of a real labor cohort.
Our results are general, and for sufficiently large system size, the
qualitative features of the results do not depend significantly on
the choice of I or T.

The case with π ¼ 0 corresponds to a random capture model
that has (i) no appraisal and (ii) no preferential capture. Hence,
in this null model, opportunities are captured at a Poisson rate
λp ¼ 1 per period. The results of this model (see SI Appendix:
Fig. S13) show that almost all careers obtain the maximum career
length T with a typical career trajectory exponent hαii ≈ 1. Com-
paring to simulations with π > 0 and c ≥ 0, the null model is si-
milar to a “long-term” appraisal system (c → 0) with sublinear
preferential capture (π < 1). In such systems, the long-term ap-
praisal time scale averages out fluctuations, and so careers are
significantly less vulnerable to periods of low production and
hence more sustainable because they are not determined primar-
ily by early career fluctuations.

However, as π increases, the strength of competitive advantage
in the system increases, and so some careers are “squeezed out”
by the larger more dominant careers. This effect is compounded
by short-term appraisal corresponding to c ≈ 1. In such systems
with superlinear capture rates and/or relatively large c, most in-
dividuals experience “sudden death” termination relatively early
in the career. Meanwhile, a small number of “stars” survive the
initial selection process, which is governed primarily by random
chance, and dominate the system.

We found drastically different lifetime distributions when
we varied the appraisal (contract) length (see SI Appendix:
Figs. S12–S16). In the case of linear preferential capture with
a long-term appraisal system c ¼ 0, we find that 10% of the labor
population terminates before reaching career age 0.94T (where
T is the maximum career length or “retirement age”), and only
25% of the labor population terminates before reaching career
age 0.98T. On the contrary, in a short-term appraisal system
with c ¼ 1, we find that 10% of the labor population terminates
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Fig. 3. Quantitative relations between career growth, career risk, and col-
laboration efficiency. The fluctuations in production reflect the unpredict-
able horizon of “career shocks” which can affect the ability of a scientists
to access new creative opportunities. (A) Relation between average annual
production hnii and collaboration radius Si ≡ Med½ki � shows a decreasing
marginal output per collaborator as demonstrated by sublinear ψ < 1. Inter-
estingly, dataset [A] scientists have on average a larger output-to-input effi-
ciency. (B) The production fluctuation scale σiðrÞ is a quantitative measure
for uncertainty in academic careers, with scaling relation σiðrÞ ∼ Sψ∕2

i . (C)
Management, coordination, and training inefficiencies can result in a γ < 1

corresponding to a decreasing marginal return with each additional coau-
thor input. The significantly larger γ value for dataset [A] scientists seems
to suggest that managerial abilities related to output efficiency is a common
attribute of top scientists.
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before reaching age 0.01T, and 25% of the labor population dies
before reaching age 0.02T (see SI Appendix: Table S1). Hence,
in model short contract systems, the longevity, output, and impact
of careers are largely determined by fluctuations and not by per-
sistence.

Fig. 4 shows the MC results for π ¼ 1. For c ≥ 1 we observe a
drastic shift in the career longevity distribution PðLÞ, which
becomes heavily right-skewed with most careers terminating ex-
tremely early. This observation is consistent with the predictions
of an analytically solvable Matthew effect model (16) which de-
monstrates that many careers have difficulty making forward pro-
gress due to the relative disadvantage associated with early career
inexperience. However, due to the nature of zero-sum competi-
tion, there are a few “big winners” who survive for the entire
duration T and who acquire a majority of the opportunities al-
located during the evolution of the system. Quantitatively, the
distribution PðNÞ becomes extremely heavy-tailed due to agents
with α > 2 corresponding to extreme accelerating career growth.
Despite the fact that all the agents are endowed initially with the
same production potential, some agents emerge as superstars
following stochastic fluctuations at relatively early stages of the
career, thus reaping the full benefits of cumulative advantage.

Discussion
An ongoing debate involving academics, university administra-
tion, and educational policy makers concerns the definition
of professorship and the case for lifetime tenure, as changes
in the economics of university growth have now placed tenure

under the review process (3, 6). Critics of tenure argue that te-
nure places too much financial risk burden on the modern com-
petitive research university and diminishes the ability to adapt to
shifting economic, employment, and scientific markets. To ad-
dress these changes, universities and other research institutes
have shifted away from tenure at all levels of academia in the last
thirty years towards meeting staff needs with short-term and non-
tenure track positions (3).

For knowledge intensive domains, production is characterized
by long-term spillovers both through time and through the knowl-
edge network of associated ideas and agents. A potential draw-
back of professions designed around short-term contracts is that
there is an implicit expectation of sustained annual production
that effectively discounts the cumulative achievements of the in-
dividual. Consequently, there is a possibility that short-term con-
tracts may reduce the incentives for a young scientist to invest in
human and social capital accumulation. Moreover, we highlight
the importance of an employment relationship that is able to
combine positive competitive pressure with adequate safeguards
to protect against career hazards and endogenous production un-
certainty an individual is likely to encounter in his/her career.

In an attempt to render a more objective review process
for tenure and other lifetime achievement awards, quantitative
measures for scientific publication impact are increasing in use
and variety (17–20, 24, 27, 46, 47). However, many quantifiable
benchmarks such as the h-index (17) do not take into account
collaboration size or discipline specific factors. Measures for
the comparison of scientific achievement should at least account

1,000 2,000

2,000 4,000 6,000 8,000 10,000 12,000

3,000 4,000 5,000

Fig. 4. MC simulation of the linear preferential capture model (π ¼ 1) for varying contract length parametrized by c. We plot the probability distributions for
(i) Ni , the total number of opportunities captured by the end period T , (ii) the growth acceleration exponent αi , (iii) the single period growth fluctuation riðtÞ
including for comparison the Laplace (solid green) and Gaussian (dashed red) best-fit distributions calculated using the respective MLE estimator, and (iv) the
career longevity Li defined as the time difference between an agent’s first and last captured opportunity. Results for c → 0 systems shows that for a “long-term
appraisal” scenario careers are less vulnerable to low-production phases, and as a result, most agents sustain production throughout the career. Conversely,
results for c ≥ 1 systems show that for a “short-term appraisal” scenario the labor system is driven by fluctuations that can cause career “sudden death” for a
large fraction of the population. In this short-term appraisal model, there are typically a small number of agents who are able to capture the majority of the
production opportunities with remarkably accelerating career growth reflected by significantly large αi ≥ 1. Thus, a few “lucky” agents are able to survive the
initial fluctuations and end up dominating the system. In SI Appendix: and Figs. S12–S16, we further show that systems with increased levels of competition
(π > 1) mimic systems with short-term contracts, resulting in productivity “death traps” whereby most careers stagnate and terminate early.
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for variable collaboration, publication, and citation factors (19,
46, 47). Hence, such open problems call for further research into
the quantitative aspects of scientific output using comprehensive
longitudinal data for not just the extremely prolific scientists, but
the entire labor force.

Current scientific trends indicate that there will be further in-
creases in typical team sizes that will forward the emergent com-
plexity arising from group dynamics (7, 12, 42), and overall, an
incredible growth of science. There is an increasing need for in-
dividual/group production measures, such as the output measure
Q, following from Eq. 7, which accounts for group efficiency
factors. Normalized production measures which account for co-
authorship factors have been proposed in refs. 19, 46, but the
measures proposed therein do not account for the variations
in team productivity.

The complexity of large collaborations raises open questions
concerning scientific productivity and the organization of teams.
We measure a decreasing marginal return γ < 1 with increasing
group size which identifies the importance of team management.
A theory of labor productivity can help improve our understand-
ing of institutional growth, for organizations ranging in size from
scientific collaborations to universities, firms, and countries (33,
34, 44, 47–50).
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